Федеральное агентство по образованию icon

Федеральное агентство по образованию



НазваниеФедеральное агентство по образованию
страница1/5
Дата конвертации25.08.2012
Размер0,5 Mb.
ТипЗадача
скачать >>>
  1   2   3   4   5

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

ПЕРМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ




Теория вероятностей




Индивидуальные задания




Пособие разработано доцентом Цыловой Е. Г., ассистентом Морозовой Е. А..


Одобрено методической комиссией кафедры «Высшая математика»

© 2007, каф. «Высшая математика» ПГТУ




Пермь 2007

Разбор типовых задач


Задача 1. В партии из 10 деталей две бракованные. Найти вероятность того, что среди выбранных на удачу четырех деталей окажется одна бракованная.

Решение: Пространство элементарных исходов представляет собой в этом случае множество всевозможных упорядоченных наборов из четырех любых деталей. Общее число таких элементарных исходов равно . Пусть событие А состоит в том, что в выборку попадут три годных детали и одна бракованная. Три годные детали из восьми можно взять способами. Следовательно, число благоприятствующих исходов равно . Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов .

Задача 2. В квадрат с вершинами (0;0), (0;1), (1;0), (1;1) наудачу брошена точка . Пусть и – координаты этой точки. Найти вероятность того, что сумма координат этой точки не превзойдет 0,5.

Решение: В прямоугольной системе координат область – квадрат со стороной 1, а область – определяется неравенством .

Область – квадрат, поэтому мера равна 1. Область – прямоугольный треугольник, катеты которого равны по 0,5. Таким образом, .

Задача 3. По каналу связи передаются три сообщения, каждое из которых может быть передано правильно или частично искажено. Вероятность того, что сообщение передано правильно – 0,8. Считая, что сообщение искажается или передается правильно не зависит от количества передач и от результата предыдущей связи найти вероятности следующих событий:

{ все три сообщения переданы верно}

{ одно из трех сообщений искажено}

{ хотя бы одно из трех сообщений искажено}

Решение: Обозначим через событие, состоящее в том, что -ое сообщение передано верно. Событие . Применяя теорему умножения для независимых событий и учитывая, что , вычислим .

Событие можно выразить через события , и следующим образом: . Применяя теорему сложения несовместных событий и теорему умножения, найдем вероятность этого события:

.

Событие . Теорему сложения для несовместных событий применить нельзя, так как события , и совместны. Вероятность события удобно вычислять через вероятность противоположного события . Вычислим .

Задача 4. Монета подброшена 5 раз. Какова вероятность, что герб появится не более 2 раз?

Решение: В этой задаче . По формуле Бернулли находим вероятность события .



.

Задача 5. Производится 400 выстрелов по мишени. Вероятность попадания при одном выстреле равна 0,8. Найти: а) наивероятнейшее число попаданий; б) вероятность 320 попаданий в мишень; в) вероятность того, что число попаданий в мишень будет не менее 300 и не более 350.

Решение: а) найдем наивероятнейшее число попаданий в мишень из неравенства . По условию задачи . Тогда получим , значит, .

б) при больших () имеет место приближенное равенство (локальная теорема Лапласа):

.

в) при больших () имеет место приближенное равенство (интегральная теорема Лапласа): . На основании этой формулы получим:

.

Задача 6. Вероятность того, что деталь нестандартна, равна =0,1. Сколько деталей надо отобрать, чтобы с вероятностью, равной 0,9544,можно было бы утверждать, что относительная частота появления нестандартной детали отклонится от вероятности не более, чем на 0,03?

Решение: По условию ;. Для решения воспользуемся формулой: . В силу условия задачи . По таблице находим . Отсюда или.

Задача 7. Определить надежность схемы, если Pi – надежность i – го элемента



Решение. Для работы схемы необходимо, чтобы одновременно происходили следующие события:

А={работал хотя бы один из элементов };

В={работал хотя бы один из элементов };

С={работал элемент };

D={работал элемент };

Е={ работал хотя бы один из элементов };

Вычислим вероятности этих событий:

Р(А)=;

Р(В)=;

Р(С)=;

Р(D)=;

Р(Е)= .

События А, В, С, D, Е – независимы, по теореме умножения вероятностей получим:

Р=[][][].


Решение остальных заданий варианта базируется на одних и тех же свойствах и теоремах, а поэтому решаются аналогично.1


Вариант №1

  1. Ребенок играет с четырьмя буквами разрезной азбуки А, А, М, М. Какова вероятность того, что при случайном расположении букв в ряд он получит слово «МАМА»?

  2. Бросают два игральных кубика. Найти вероятность того, что произведение выпавших очков четное.

  3. В квадрат с вершинами в точках (0,0), (0,1), (1,1), (1,0) наудачу брошена точка (х,у). Найдите вероятность того, что координаты этой точки удовлетворяют неравенству у<2х.

  4. Имеется пять билетов стоимостью по одному рублю, три билета по три рубля и два билета по пять рублей. Наугад берутся три билета. Определить вероятность того, что

а) все три билета стоят вместе семь рублей,

б) все три билета стоимостью по одному рублю.

  1. Из урны, содержащей 5 белых шаров и 5 черных, наудачу достают 6 штук. Найти вероятность того, что среди вынутых шаров окажется одинаковое число черных и белых (шары отличаются только цветом).

  2. Двадцать экзаменационных билетов содержат по два вопроса, которые не повторяются. Экзаменующийся выучил 35 вопросов. Определить вероятность того, что экзамен будет сдан, если для этого нужно ответить на два вопроса билета или на один вопрос билета и один дополнительный вопрос из другого билета.

  3. Из урны, содержащей 5 шаров с номерами от 1 до 5, последовательно извлекаются два шара, причем первый шар возвращается, если номер не равен единице. Определить вероятность того, что шар с номером два будет извлечен при втором извлечении.

  4. В каждой из двух урн находятся 5 белых шаров и 10 черных. Из первой урны во вторую наудачу переложили один шар, а затем из второй урны наугад вынули один шар. Найти вероятность того, что шар, вынутый из второй урны, окажется белым.

  5. Число грузовых машин, проезжающих по шоссе, на котором стоит бензоколонка, относится к числу легковых как 3:2. Вероятность того, что будет заправляться грузовая машина, равна 0,1; для легковой машины эта вероятность равна 0,2. К бензоколонке подъехала для заправки машина. Найти вероятность того, что это грузовая машина.

  6. В семье пять детей. Найти вероятность того, что среди этих детей:

а) два мальчика,

б) не более двух мальчиков,

в) более двух мальчиков,

г) не менее двух и не более трех мальчиков.

Принять вероятность рождения мальчика равной 0,51.

  1. Вероятность получения бракованной детали равна 0,01. Какова вероятность того, что среди 400 деталей бракованных окажется:

а) 3 детали;

б) хотя бы одна.

  1. При передаче сообщения на расстояние вероятность искажения одного знака равна 0,01. Какова вероятность того, что при передаче сообщения из 300 знаков: а) не будет ни одного искажения, б) будет два искажения, в) будет хотя бы одно искажение?

  2. Определить надежность схемы, если Pi – надежность i – го элемента




Вариант №2

  1. Числа 1,2,3,4,5 написаны на пяти карточках. Наугад последовательно выбираются три карточки и располагаются в порядке появления слева направо. Найти вероятность того, что полученное при этом трехзначное число будет четным.

  2. Бросают два игральных кубика. Найти вероятность того, что произведение выпавших очков равно 8.

  3. На отрезок АВ длиной 12 см наугад ставят точку М. Найдите вероятность того, что площадь квадрата, построенного на отрезке АМ, будет между 36 см2 и 81 см2.

  4. В лотерее N билетов, из которых M выигрышных. Участник купил k билетов. Какова вероятность того, что он ни по одному билету не выиграет?

  5. В ящике 10 деталей, среди которых 5 бракованных. Наудачу достают 3 детали. Найти вероятность следующих событий:

а) все детали окажутся годными;

б) две детали окажутся годными и одна бракованная.

  1. Какова вероятность, что наудачу выбранное пятизначное число содержит только нечетные цифры?

  2. Из ящика, где 12 деталей 1 категории и 20 деталей второй категории, наудачу без возвращения извлекли 2 детали. Найти вероятность того, что вторая деталь 1 категории.

  3. В каждой из двух урн имеются по 7 белых и 3 черных шара. Из первой урны во вторую наудачу переложены два шара. После этого из второй урны наудачу достают один шар. Какова вероятность что он окажется белый?

  4. Две перфораторщицы набили на перфораторах по одному комплекту перфокарт. Вероятность того, что первая перфораторщица допустит ошибку, равна 0,05; для второй перфораторщицы эта вероятность равна 0,1. При сверке перфокарт была обнаружена ошибка. Найти вероятность того, что ошиблась первая перфораторщица. Предполагается ,что оба перфоратора были исправны.

  5. Монету подбрасывают 100 раз. Найти наивероятнейшее число появлений герба и вероятность такого результата.

  6. Вероятность поражения мишени при одном выстреле равна 0,8. Найти вероятность того, что при 100 выстрелах мишень будет поражена ровно 75 раз.

  7. Пусть вероятность нарушения герметичности банки консервов равна 0,0005.Найти вероятность того, что среди 2000 банок две окажутся с нарушением герметичности.

  8. Определить надежность схемы, если Pi – надежность i – го элемента




Вариант №3

  1. Два игрока бросают монету по два раза каждый. Выигравшим считается тот, кто получит больше гербов. Найти вероятность того, что выигрывает первый игрок.

  2. Устройство секретного замка включает в себя 4 ячейки. В первой ячейке осуществляется набор одной из четырех букв A, B, C, D, в трех остальных – одной из десяти цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (цифры могут повторяться). Чему равна вероятность того, что замок будет открыт с первой попытки?

  3. Плоскость разграфлена параллельными прямыми, отстоящими друг от друга на расстоянии 10 см. На плоскость наудачу бросается монета радиуса 2 см. Найти вероятность того, что монета не пересечет ни одной из прямых.

  4. В бригаде 4 женщины и 3 мужчины. Среди членов бригады разыгрываются 4 билета в театр. Какова вероятность того, что среди обладателей билетов окажется 2 женщины и 2 мужчины?

  5. В ящике лежат 10 красных, 8 синих и 5 зеленых шаров; шары отличаются только цветом. Наудачу вынимают два шара. Какова вероятность того, что оба вынутых шара окажутся одного цвета?

  6. Два игрока поочередно бросают монету. Выигрывает тот, кто первым получит герб. Найти вероятность выигрыша для первого игрока.

  7. В лотерее 100 билетов из которых 20 выигрышных. Участник покупает два билета. Определить вероятность того, что хотя бы один билет будет выигрышным.

  8. По самолету производится два выстрела, вероятность попадания при каждом равна 0,6. При одном попадании самолет будет сбит с вероятностью 0,5, при двух – с вероятностью 0,9. Какова вероятность, что самолет будет сбит?

  9. Изделие проверяется на стандартность одним из двух товароведов. Вероятность того, что изделие попадет к первому товароведу, равна 0,55, а ко второму 0,45. Вероятность того, что стандартное изделие будет признано стандартным первым товароведом, равна 0,9, а вторым – 0,98. Стандартное изделие при проверке было признано стандартным. Найти вероятность того, что это изделие проверил второй товаровед.

  10. Вероятность появления события А в каждом опыте равна 0,3. Опыт повторяется 5 раз. Найти вероятность того, что событие появляется не более 2 раз.

  11. Вероятность появления события в каждом из 900 независимых испытаний равна 0,5. Найти вероятность того, что относительная частота появления события отклонится от его вероятности по абсолютной величине не белее чем на 0,02.

  12. Вероятность появления события в одном испытании равна 0,8. Сколько нужно произвести испытаний, чтобы с вероятностью 0,95 можно было ожидать отклонение относительной частоты появления события от его вероятности не более, чем на 0,05.

  13. Определить надежность схемы, если Pi – надежность i – го элемента




Вариант №4

  1. В лифт девятиэтажного дома на первом этаже вошли 3 человека. Каждый из них с одинаковой вероятностью выходит на любом из этажей, начиная со второго. Найти вероятности следующих событий:

А) – все пассажиры выйдут на одном этаже.

В) – все пассажиры выйдут на разных этажах.

  1. Бросают два игральных кубика. Найти вероятность того, что сумма очков, выпавших на этих кубиках, не превзойдет 6.

  2. Каждое их двух чисел неотрицательно, но меньше 2. Найти такие два числа, сумма которых не больше 2,5, а произведение больше 4.

  3. В урне «а» белых шаров и «в» черных (а>2). Из урны вынимают сразу два шара. Найти вероятность того, что оба шара будут белыми?

  4. В урне 8 шаров: 3 белых и 5 черных. Какова вероятность того, что вынутые наугад два шара окажутся:

а) белые;

б) черные;

в) одного цвета.

  1. Радист трижды вызывает корреспондента. Причем следующий вызов производится при условии, что предыдущий вызов не принят. Вероятность принятия первого вызова равна 0,3, второго – 0,4, третьего – 0,5. Найти вероятность того, что вызов будет принят.

  2. На карточках написаны цифры 2,3,4,5,6,7,8,9. Наудачу берут две карточки. Какова вероятность, что обе выбранные цифры нечетные.

  3. В ящике содержится 12 деталей завода №1, 20 деталей завода №2; 18 деталей завода №3. Вероятность того, что деталь завода №1 отличного качества, равна, 0,9; для деталей заводов №2 и №3 вероятности соответственно равны 0,6 и 0,9. Найти вероятность того, что извлеченная наудачу деталь окажется отличного качества.

  4. Известно, что 5% мужчин и 0,25 всех женщин дальтоники. Наудачу выбранное лицо – дальтоник. Какова вероятность того, что это мужчина? (считать, что мужчин и женщин одинаковое количество).

  5. Найти вероятность того, что при пяти подбрасываниях игрального кубика единица появляется хотя бы один раз.

  6. Вероятность появления события в каждом из независимых испытаний равна 0,2. Найти число испытаний , при котором с вероятностью 0,9876 можно ожидать, что относительная частота появления события отклоняется от его вероятности по абсолютной величине не более чем на 0,04.

  7. Вероятность появления события в каждом из независимых испытаний равна 0,5. Найти число испытаний , при котором с вероятностью 0,9973 можно ожидать, что относительная частота появления события отклониться от его вероятности по абсолютной величине не более, чем на 0,02.

  8. Определить надежность схемы, если Pi – надежность i – го элемента



  1   2   3   4   5




Нажми чтобы узнать.

Похожие:

Федеральное агентство по образованию iconПриоритетный национальный проект «образование» создание сети национальных исследовательских университетов федеральное агентство по образованию федеральное агентство по образованию
Аналитическая справка о работе, выполненной в рамках реализации программы развития национального исследовательского университета
Федеральное агентство по образованию iconПриоритетный национальный проект «образование» создание сети национальных исследовательских университетов федеральное агентство по образованию федеральное агентство по образованию
Блок Развитие образовательной деятельности и создание инновационной системы подготовки кадров на основе единства обучения и научных...
Федеральное агентство по образованию iconПрограмма развития образования на 2006 2010 годы
Федеральное агентство по образованию, Федеральное агентство по науке и инновациям
Федеральное агентство по образованию iconФедеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образованию Всероссийский заочный финансово-экономический институт
Организация учета незавершенного производства и готовой продукции
Федеральное агентство по образованию iconПисьмо Федерального агентства по образованию от 10 апреля 2007 г. N 18-10/174
Федеральное агентство по образованию направляет для использования в работе Типовое положение о президенте государственного высшего...
Федеральное агентство по образованию iconФедеральное агентство по образованию

Федеральное агентство по образованию iconФедеральное агентство по образованию

Федеральное агентство по образованию iconФедеральное агентство по образованию

Федеральное агентство по образованию iconФедеральное агентство по образованию

Федеральное агентство по образованию iconФедеральное агентство по образованию

Федеральное агентство по образованию iconФедеральное агентство по образованию

Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©rushkolnik.ru 2000-2015
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы